skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shakur, Ameer Hamza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Survival data is often collected in medical applications from a heterogeneous population of patients. While in the past, popular survival models focused on modeling the average effect of the covariates on survival outcomes, rapidly advancing sensing and information technologies have provided opportunities to further model the heterogeneity of the population as well as the non-linearity of the survival risk. With this motivation, we propose a new semi-parametric Bayesian Survival Rule List model in this paper. Our model derives a rule-based decision-making approach, while within the regime defined by each rule, survival risk is modelled via a Gaussian process latent variable model. Markov Chain Monte Carlo with a nested Laplace approximation on the Gaussian process posterior is used to search over the posterior of the rule lists efficiently. The use of ordered rule lists enables us to model heterogeneity while keeping the model complexity in check. Performance evaluations on a synthetic heterogeneous survival dataset and a real world sepsis survival dataset demonstrate the effectiveness of our model. 
    more » « less